Technical

User Guide

Cation Exchange Adsorbents

SP PURABEAD® HF

Product Code: 3453

CM PURABEAD® HF

Product Code: 3450

INTRODUCTION

Cation exchange adsorbents have been designed for capture and intermediate steps for the purification of positively charged bio-molecules.

SP PuraBead® HF is a high-performance strong cation exchange chromatography adsorbent with a Sulphonic acid group coupled via a propyl linker (SP).

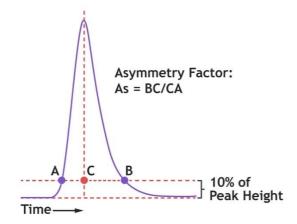
CM PuraBead® HF is a high-performance weak cation exchange chromatography adsorbent with a carboxy methyl group.

Both ligands are coupled to highly cross-linked near monodisperse 6% beaded agarose (PuraBead® 6HF) which has excellent flow properties. Both adsorbents are stable in up to

1.0 M sodium hydroxide which allows for stringent cleaning and sanitization protocols.

Properties of cation exchange adsorbents:

ADSORBENT:	SP PuraBead® HF	CM PuraBead® HF
LIGAND:	Sulphonic acid with a propyl linker (SP)	Carboxymethyl (CM)
TYPE OF ION EXCHANGER:	Strong Cation	Weak Cation
TOTAL IONIC CAPACITY:	≥ 175 µmol/g settled gel	90 to 130 µmol/g settled gel
MEAN PARTICLE SIZE (µm):	90 ± 10 μm	
MATRIX:	PuraBead® 6HF (Highly cross-linked 6% near monodisperse agarose)	
BINDING CAPACITY:	≥ 90 mg/mL of adsorbent (lysozyme)	≥ 60 mg/mL of adsorbent (lysozyme)
RECOMMENDED PACKING CONDITIONS:	Pack at a constant pressure of 1.5 bar (~ 22 psi)	
RECOMMENDED OPERATIONAL FLOW RATES:	Up to 600 cm/h	
OPERATING PH:	pH 4.0 - pH 14.0	
CHEMICAL STABILITY:	All commonly used aqueous buffers and co-solvents	
CLEANING/SANITIZATION:	0.5 to 1.0 M NaOH	
STERILIZATION:	Autoclavable in 0.1 M NaCl solution at 121 °C for 30 minutes	
STORAGE:	2 - 30 °C, 20% ethanol, 0.2 M sodium acetate	2 - 30 °C, 20% ethanol


COLUMN PACKING

The cation exchange adsorbents are supplied in a preservative containing 20% ethanol. Due to the presence of ethanol, there may initially be an increased back pressure during the pack, however, this should reduce after ~ 1 column volume (CV). There is no requirement to remove the preservative prior to packing. Before commencing the column pack, consult the relevant manufacturer's instructions for the selected column. The method below describes the packing of Astrea Bioseparations' cation exchange adsorbents into axial columns:

- 1. Assemble the column and remove air from the dead spaces by flushing the end piece and adaptor with packing solution (0.1 M NaCl solution or equilibration buffer) then close the column outlet.
- 2. Allow all materials to equilibrate to the temperature at which the chromatography process is to be performed.
- 3. If required to obtain a fixed bed height (i.e. for larger column packs), it is recommended to determine the slurry percentage. For example, weigh a sample of the complete slurry, drain away the preservative and re-weigh the adsorbent. The final weight over the total weight will determine the slurry percentage. The compression factor of this adsorbent is 1.15 to 1.20.
- 4. Carefully pour the adsorbent slurry into the column in a single continuous step. Pouring the adsorbent down the side of the column helps to prevent air becoming trapped within the adsorbent bed.
- 5. Allow the adsorbent to settle in the column leaving a dead volume of packing solution above the adsorbent bed.
- 6. Attach the (open) top adaptor to the top of the column and adjust the adaptor to ~1 cm above the bed, tighten the adaptor and attach to the workstation. Open the column outlet and apply the desired flow to the bed (for ~ 2 CV). The recommended packing condition (to obtain a uniform pack) is at a constant pressure of 1.5 bar (~ 22 psi). The flow rate is dependent on column dimensions, however, will range from 700 to 1000 cm/h.
- 7. Once the adsorbent has packed (after ~ 2 CV), measure and mark the bed height under packing flow and close the column outlet and stop the liquid flow through the bed.
- 8. Lower the top adaptor (the top adaptor must allow free flow from the workstation either by loosening the top adaptor connection or if present switching the top valve to waste) to up to ~1 cm below the position of the marked bed height.
 - **Note:** once the flow is paused the bed may relax and rise. The seal of the top adaptor may need to be loosened to allow the adaptor to be lowered.
- 9. Re-tighten the top adaptor (if loosened) and attach back to the workstation (or switch valve back in-line). Apply the packing flow to the column again for ~ 1 CV. If a space is formed between the top of the bed and the adaptor repeat the steps above. If no space forms the column is packed and ready to use.

COLUMN EFFICIENCY TEST

- 1. Test the column at a flow rate of 100 cm/h.
- 2. Attach the column to an equilibrated workstation.
- 3. Commence flow for 1 CV (i.e. to equilibrate and obtain baseline).
- 4. Inject 2% to 5% CV of a 2% acetone or 2 M NaCl solution.
- 5. Continue flow until a UV (or conductivity) peak is observed and the trace has returned to baseline (1 to 1.5 CV).
- 6. End run and determine the asymmetry factor:

7. The recommended asymmetry factor for packed cation exchange adsorbents is between 0.8 to 1.2. The recommended plate count for an acceptable pack is ≥ 2000 N/m.

OPERATING INSTRUCTIONS

Note: The following recommendations are not prescriptive and thorough investigation of these parameters at small-scale should be conducted to reveal the level of flexibility that can be tolerated with the chromatography adsorbent, buffer and protein combination selected. CIEX column kits are also available for screening experiments.

The following method is recommended (as a starting point), using an initial flow rate of 100 cm/h for the column chromatography steps. Subsequent increases/decreases in the flow rate can be investigated to improve binding capacity/resolution or decrease processing times.

Filter all buffers and feedstock through an appropriate filter, prior to running the column.

1. Equilibrate the column with up to 5 CV of equilibration buffer e.g. 20 mM phosphate, pH 6.0. Other buffers suitable for use with Astrea Bioseparations' cation exchange adsorbents to obtain optimal binding include sodium citrate and sodium acetate.

Note: The equilibration buffer pH and conductivity should match that of the protein feedstock. CIEX adsorbents are designed for adsorption of positively charged proteins (pH < pI). It is recommended to use an equilibration buffer with a pH of at least 0.5 units below the isoelectric point (pI) of the target protein. The ionic strength of the equilibration buffer should also be low, with preferably no or minimal salt present.

- 2. Apply the clarified / filtered protein feedstock onto the equilibrated column. Recommended residence time of 3 minutes (or greater).
- 3. Remove any non-bound material in the column with up to 5 CV of equilibration solution/buffer, or until the UV trace returns to baseline.
- 4. Elute the bound protein by increasing the conductivity of the solution with up to 5 CV of elution buffer. Any of the recommended equilibration buffers with the addition of up to 1.0 M sodium chloride (NaCl) would be suitable.

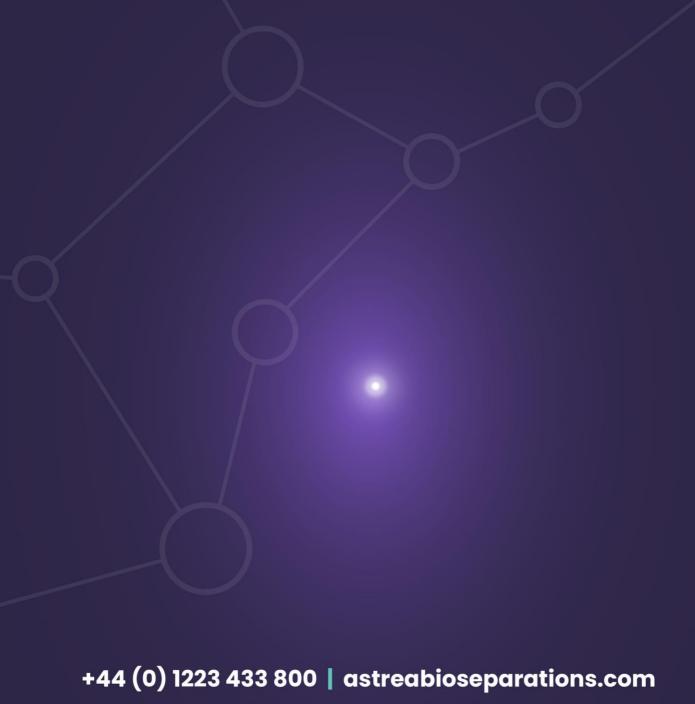
For initial investigations, it is recommended to carry out a salt elution gradient (e.g. 20 CV from 0 to 1.0 M NaCl in equilibration buffer) to determine the appropriate elution condition for your target biomolecule and will also identify a purification strategy (i.e. separation of non-target proteins).

- 5. If a CIP is required, use up to 5 CV of 0.5 to 1.0 M NaOH. A contact time of 1 hour will normally suffice to ensure destruction of viable organisms, although up to 5 hours contact time may be required. No less than 5 column volumes are recommended.
- 6. Re-equilibrate column with up to 5 CV of equilibration buffer (to remove sodium hydroxide) and check pH and conductivity of the column eluate is equal to that of the buffer entering the column before storage or re-use.
- 7. If the column is to be stored for future use, place the column into the storage solution (20% ethanol recommended, 0.1 M NaOH acceptable for short term storage) and store at 2 30 °C.

ORDER INFORMATION

Gel Slurry

Code	Description	Pack Size
3453-00025	SP PuraBead® HF	25 mL
3453-00100	SP PuraBead® HF	100 mL
3453-00500	SP PuraBead® HF	500 mL
3453-01000	SP PuraBead® HF	1000 mL


Code	Description	Pack Size
3450-00025	CM PuraBead® HF	25 mL
3450-00100	CM PuraBead® HF	100 mL
3450-00500	CM PuraBead® HF	500 mL
3450-01000	CM PuraBead® HF	1000 mL

Astrea Bioseparations also supplies larger volumes of bulk resins for cGMP development and manufacturing scale processes.

Column Kits

Code	Description	Pack Size
6604	SP PuraBead® HF	4 x 1 mL columns
6605	SP PuraBead® HF	4 x 5 mL columns
6606	CM PuraBead® HF	4 x 1 mL columns
6607	CM PuraBead® HF	4 x 5 mL columns
6608	IEX selection kit (1 mL columns)	1 x 1 mL Q PuraBead® HF 1 x 1 mL SP PuraBead® HF 1 x 1 mL CM PuraBead® HF 1 x 1 mL DEAE PuraBead® HF
6609	IEX selection kit (5 mL columns)	1 x 5 mL Q PuraBead® HF 1 x 5 mL SP PuraBead® HF 1 x 5 mL CM PuraBead® HF 1 x 5 mL DEAE PuraBead® HF

Astrea Bioseparations can also provide column packing services. For more information on this, or any other matters please do not hesitate to contact us at sales@astrea-bio.com

sales@astrea-bio.com | techsupport@astrea-bio.com | quality@astrea-bio.com

Global bases in North America, Canada and Cambridge UK HQ: Horizon Park, Barton Road, Comberton, Cambridge, CB23 7AJ, UK

CCR Number: CCR-1231
Author Name: R Dodd
QA Reviewer Name: R Hawki

All trademarks, trade names, trade dress, product names and logos appearing on this document are the property of Astrea UK Services Ltd.

Copyright © 2022 Astrea Bioseparations Ltd. All rights reserved.

